
How I learned to stop worrying and yank the USB

Taylor R Campbell
riastradh@NetBSD.org

EuroBSDcon 2022
Vienna, Austria

September 17, 2022

How I learned to stop worrying and yank the USB

https://www.NetBSD.org/gallery/presentations/

riastradh/eurobsdcon2022/opendetach.pdf

https://www.NetBSD.org/gallery/presentations/riastradh/eurobsdcon2022/opendetach.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/eurobsdcon2022/opendetach.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/eurobsdcon2022/opendetach.pdf

Devices in BSD: autoconf(9) and /dev nodes

▶ autoconf(9) instances in kernel: pci0, pchb0, ppb1,
wsdisplay0, xhci2, . . .
▶ Bundle of related driver state for a hardware device
▶ Organized in a tree based on hardware
▶ Discovered at boot by bus enumeration and on hotplug events
▶ match, attach, detach

▶ /dev nodes (chardevs, blockdevs) for userland interface:
/dev/uhid0, /dev/ttyU1, /dev/rsd3a, /dev/zero, . . .
▶ Software interface for userland (char) or file systems (block)
▶ State may be:

▶ backed by autoconf instance
▶ allocated in software: ‘cloning devices’
▶ stateless: /dev/zero, /dev/null, /dev/mem, . . .

▶ Access bracketed by open and close as files
▶ open, read/write/ioctl/strategy/. . . , close

autoconf example: ualea(4)

static int

ualea_match(device_t parent, cfdata_t match, void *aux)

{

struct usbif_attach_arg *uiaa = aux;

if (usb_lookup(ualea_devs, uiaa->uiaa_vendor, uiaa->uiaa_product))

return UMATCH_VENDOR_PRODUCT;

return UMATCH_NONE;

}

static void

ualea_attach(device_t parent, device_t self, void *aux)

{

struct usbif_attach_arg *uiaa = aux;

struct ualea_softc *sc = device_private(self);

...

}

static int

ualea_detach(device_t self, int flags)

{

...

}

CFATTACH_DECL_NEW(ualea, sizeof(struct ualea_softc),

ualea_match, ualea_attach, ualea_detach, NULL);

cdevsw example: ulpt(4)

static int

ulptopen(dev_t dev, int flag, int mode, struct lwp *l)

{

struct ulpt_softc *sc = device_lookup_private(&ulpt_cd, ULPTUNIT(dev));

if (sc == NULL)

return ENXIO;

...

}

static int

ulptclose(dev_t dev, int flag, int mode, struct lwp *l)

{

...

}

static int

ulptread(dev_t dev, struct uio *uio, int flags)

{

struct ulpt_softc *sc = device_lookup_private(&ulpt_cd, ULPTUNIT(dev));

...

}

...

const struct cdevsw ulpt_cdevsw = {

.d_open = ulptopen,

.d_close = ulptclose,

.d_read = ulptread,

.d_write = ulptwrite,

...

};

pci0

i915drmkms0

intelfb0

wsdisplay0 <- /dev/ttyE0

xhci0

usb0

uhub0

umass0

scsibus0

sd0 <- /dev/sd0a, /dev/sd0b, ...

umass1

scsibus1

sd1 <- /dev/sd1a, /dev/sd1b, ...

usb1

uhub1

uftdi0

ucom0 <- /dev/ttyU0, /dev/dtyU0

...

device t /dev node (amd64)

uhidN /dev/uhidN (chr maj=66 min=N)

ucomN /dev/ttyUN (chr maj=66 min=N)
/dev/dtyUN (chr maj=66 min=0x80000 | N)

sdN /dev/sdNa (blk maj=4 min=64N)
/dev/sdNb (blk maj=4 min=64N + 1)

...
/dev/rsdNa (chr maj=13 min=64N)
/dev/rsdNb (chr maj=13 min=64N + 1)
...

(cloning) /dev/audioN (chr maj=42 min=0x80 | N)

(stateless) /dev/null

Easy timeline

1. foo attach when device plugged in

2. foo open when program opens /dev node

3. foo read/write/ioctl when program does I/O on file

4. foo close when program closes file

5. foo detach when device unplugged after no longer in use

Easy timeline

1. attach

2. open

3. read/write/ioctl

4. close

5. detach

Easy Naive timeline

1. attach

2. open

3. read/write/ioctl

4. close

5. detach

Complication: device yanked while open?

1. attach

2. open

3. read/write/ioctl

4. detach

5. more read/write/ioctl

6. close

Complication: no device to open?

1. open

2. attach

3. detach

4. open

Complication: no device to open?

1. open =⇒ must fail

2. attach

3. detach

4. open =⇒ must fail

Complication: device yanked in the middle of open?

1. attach

2. open called

3. detach

4. open returns

▶ success?
▶ failure?
▶ crash?

Complication: device yanked in the middle of open?

1. attach

2. open called

3. detach

4. open returns
▶ success?

▶ failure?
▶ crash?

Complication: device yanked in the middle of open?

1. attach

2. open called

3. detach

4. open returns
▶ success?
▶ failure?

▶ crash?

Complication: device yanked in the middle of open?

1. attach

2. open called

3. detach

4. open returns
▶ success?
▶ failure?
▶ crash?

Complication: concurrent open?

1. attach

2. Thread 1

2.1 open

2.2 read/write/ioctl

2.3 close

Thread 2

2.1 open

▶ succeed? (multi-open?)
▶ fail? (exclusive only?)
▶ crash? (oops)

3. detach

Complication: concurrent open?

1. attach

2. Thread 1

2.1 open

2.2 read/write/ioctl

2.3 close

Thread 2

2.1 open

▶ succeed? (multi-open?)

▶ fail? (exclusive only?)
▶ crash? (oops)

3. detach

Complication: concurrent open?

1. attach

2. Thread 1

2.1 open

2.2 read/write/ioctl

2.3 close

Thread 2

2.1 open

▶ succeed? (multi-open?)
▶ fail? (exclusive only?)

▶ crash? (oops)

3. detach

Complication: concurrent open?

1. attach

2. Thread 1

2.1 open

2.2 read/write/ioctl

2.3 close

Thread 2

2.1 open

▶ succeed? (multi-open?)
▶ fail? (exclusive only?)
▶ crash? (oops)

3. detach

Complication: concurrent open and close?

If opened multiple times, struct cdevsw::d close is called for
last close only, until next open.

1. attach

2. T1: open

3. T2: open

4. T1: close

5. T2: close

6. detach

Complication: concurrent open and close?

If opened multiple times, struct cdevsw::d close is called for
last close only, until next open.

1. attach

2. T1: open =⇒ call d open

3. T2: open

4. T1: close

5. T2: close

6. detach

Complication: concurrent open and close?

If opened multiple times, struct cdevsw::d close is called for
last close only, until next open.

1. attach

2. T1: open =⇒ call d open

3. T2: open =⇒ call d open again

4. T1: close

5. T2: close

6. detach

Complication: concurrent open and close?

If opened multiple times, struct cdevsw::d close is called for
last close only, until next open.

1. attach

2. T1: open =⇒ call d open

3. T2: open =⇒ call d open again

4. T1: close =⇒ no driver callback

5. T2: close

6. detach

Complication: concurrent open and close?

If opened multiple times, struct cdevsw::d close is called for
last close only, until next open.

1. attach

2. T1: open =⇒ call d open

3. T2: open =⇒ call d open again

4. T1: close =⇒ no driver callback

5. T2: close =⇒ call d close

6. detach

Complication: open can fail

1. attach

2. open called

3. open fails

4. detach

Complication: open can fail

1. attach

2. open called =⇒ call d open

3. open fails

4. detach

Complication: open can fail

1. attach

2. open called =⇒ call d open

3. open fails =⇒ no driver callback—only on successful open

4. detach

Complication: concurrent open and close, but open fails?

1. attach

2. T1: open

3. T2: open called

4. T1: close

5. T2: open fails

6. detach

Complication: concurrent open and close, but open fails?

1. attach

2. T1: open =⇒ call d open

3. T2: open called

4. T1: close

5. T2: open fails

6. detach

Complication: concurrent open and close, but open fails?

1. attach

2. T1: open =⇒ call d open

3. T2: open called =⇒ call d open again

4. T1: close

5. T2: open fails

6. detach

Complication: concurrent open and close, but open fails?

1. attach

2. T1: open =⇒ call d open

3. T2: open called =⇒ call d open again

4. T1: close =⇒ no driver callback

5. T2: open fails

6. detach

Complication: concurrent open and close, but open fails?

1. attach

2. T1: open =⇒ call d open

3. T2: open called =⇒ call d open again

4. T1: close =⇒ no driver callback

5. T2: open fails =⇒ call d close, despite failure in this thread

6. detach

Detach

1. Detach triggered by yanking removable device

2. Must free resources allocated by attach

3. But what if device is still open?

Detach

1. Detach triggered by yanking removable device

2. Must free resources allocated by attach

3. But what if device is still open?

Clearing a road for repaving

How do you clear a road for repaving?

1.

2. If existing cars are parked, leave a note they need to move

3. Wait for all the cars to leave

Clearing a road for repaving

How do you clear a road for repaving?

1. Bulldoze it and lay rail for a tram line instead

2. If existing cars are parked, leave a note they need to move

3. Wait for all the cars to leave

Clearing a road for repaving

How do you clear a road for repaving?

1. Bulldoze it and lay rail for a tram line instead

2. If existing cars are parked, leave a note they need to move

3. Wait for all the cars to leave

Clearing a road for repaving

How do you clear a road for repaving?

1. Close it off so no new cars can enter

2. If existing cars are parked, leave a note they need to move

3. Wait for all the cars to leave

Clearing a road for repaving

How do you clear a road for repaving?

1. Close it off so no new cars can enter

2. If existing cars are parked, leave a note they need to move

3. Wait for all the cars to leave

Clearing a road for repaving

How do you clear a road for repaving?

1. Close it off so no new cars can enter

2. If existing cars are parked, leave a note they need to move

3. Wait for all the cars to leave

Clearing a road for repaving

How do you clear a road for repaving?

1. Close it off so no new cars can enter

2. If existing cars are parked, leave a note they need to move

3. Wait for all the cars to leave

It is now safe to repave the road.

Clearing a road for repaving

How do you clear a road for repaving?

1. Close it off so no new cars can enter

2. If existing cars are parked, leave a note they need to move

3. Wait for all the cars to leave

It is now safe to repave the road and put in a separated bike lane.

Freeing a resource in use

How do you free a resource that may be in use?

1. Close it off so no new users can start using it

2. If existing users are sleeping indefinitely, wake them

3. Wait for all the users to finish

It is now safe to free the resource.

Detaching an open device

How do you free resources of an autoconf instance with open
device nodes using it?

1. Prevent new opens

2. Interrupt pending I/O (read/write/ioctl)

3. Wait for opens and I/O to finish

It is now safe to free the resources.

Difficult—or impossible—to get right inside a driver.
Many drivers need this fixed. Can we make it easy to fix them all?

Detaching an open device

How do you free resources of an autoconf instance with open
device nodes using it?

1. Prevent new opens

2. Interrupt pending I/O (read/write/ioctl)

3. Wait for opens and I/O to finish

It is now safe to free the resources.
Difficult—or impossible—to get right inside a driver.

Many drivers need this fixed. Can we make it easy to fix them all?

Detaching an open device

How do you free resources of an autoconf instance with open
device nodes using it?

1. Prevent new opens

2. Interrupt pending I/O (read/write/ioctl)

3. Wait for opens and I/O to finish

It is now safe to free the resources.
Difficult—or impossible—to get right inside a driver.
Many drivers need this fixed. Can we make it easy to fix them all?

device t references

dev_t dev; // maj/min num of /dev node

device_t dv; // autoconf instance ptr

struct foo_softc *sc; // driver private state

dv = device_lookup(&foo_cd, FOOUNIT(dev));

if (dv == NULL)

return ENXIO;

sc = device_private(dv);

device t references

dev_t dev; // maj/min num of /dev node

device_t dv; // autoconf instance ptr

struct foo_softc *sc; // driver private state

dv = device_lookup(&foo_cd, FOOUNIT(dev));

if (dv == NULL)

return ENXIO;

sc = device_private(dv);

/* dv may be detached and sc freed at this point */

device t references

dev_t dev; // maj/min num of /dev node

device_t dv; // autoconf instance ptr

struct foo_softc *sc; // driver private state

dv = device_lookup_acquire(&foo_cd, FOOUNIT(dev));

if (dv == NULL)

return ENXIO;

sc = device_private(dv);

/* dv cannot be detached nor sc freed here */

device_release(dv);

device t references and bdevsw/cdevsw d open

const struct cdevsw foo_cdevsw = {

.d_open = fooopen,

...

.d_cfdriver = &foo_cd,

.d_devtounit = dev_minor_unit,

...

};

device t references and bdevsw/cdevsw d open

static int

fooopen(dev_t dev, int flag, int mode, struct lwp *l)

{

device_t dv = device_lookup(&foo_cd,

dev_minor_unit(dev));

struct foo_softc *sc;

if (dv == NULL)

return ENXIO;

sc = device_private(dv);

/* dv and sc stable until return */

...

}

device t references and bdevsw/cdevsw d open

▶ Minimal changes needed to drivers to make device lookup safe
in d open:

Add d cfdriver and d devtounit to struct cdevsw.

▶ Note: d devtounit must match!
▶ Some prefab d devtounit functions:

▶ dev minor unit
▶ disklabel dev unit
▶ tty unit

device t references and bdevsw/cdevsw d open

▶ Minimal changes needed to drivers to make device lookup safe
in d open:

Add d cfdriver and d devtounit to struct cdevsw.

▶ Note: d devtounit must match!

▶ Some prefab d devtounit functions:
▶ dev minor unit
▶ disklabel dev unit
▶ tty unit

device t references and bdevsw/cdevsw d open

▶ Minimal changes needed to drivers to make device lookup safe
in d open:

Add d cfdriver and d devtounit to struct cdevsw.

▶ Note: d devtounit must match!
▶ Some prefab d devtounit functions:

▶ dev minor unit
▶ disklabel dev unit
▶ tty unit

Digression: revoke(2) and tty security

▶ BSD-specific syscall: revoke(2)

▶ On boot, getty(8) opens tty and calls login(1)

▶ On successful authentication, login(1) chowns tty to login user

▶ After logout, getty(8) chowns tty back to root

▶ getty(8) then revokes tty

Digression: revoke(2) and tty security

▶ BSD-specific syscall: revoke(2)

▶ On boot, getty(8) opens tty and calls login(1)

▶ On successful authentication, login(1) chowns tty to login user

▶ After logout, getty(8) chowns tty back to root

▶ getty(8) then revokes tty

Digression: revoke(2) and tty security

▶ BSD-specific syscall: revoke(2)

▶ On boot, getty(8) opens tty and calls login(1)

▶ On successful authentication, login(1) chowns tty to login user

▶ After logout, getty(8) chowns tty back to root

▶ getty(8) then revokes tty

Digression: revoke(2) and tty security

▶ BSD-specific syscall: revoke(2)

▶ On boot, getty(8) opens tty and calls login(1)

▶ On successful authentication, login(1) chowns tty to login user

▶ After logout, getty(8) chowns tty back to root

▶ getty(8) then revokes tty

Digression: revoke(2) and tty security

▶ BSD-specific syscall: revoke(2)

▶ On boot, getty(8) opens tty and calls login(1)

▶ On successful authentication, login(1) chowns tty to login user

▶ After logout, getty(8) chowns tty back to root
=⇒ user can’t open tty

▶ getty(8) then revokes tty

Digression: revoke(2) and tty security

▶ BSD-specific syscall: revoke(2)

▶ On boot, getty(8) opens tty and calls login(1)

▶ On successful authentication, login(1) chowns tty to login user

▶ After logout, getty(8) chowns tty back to root
=⇒ user can’t open tty

▶ getty(8) then revokes tty

Digression: revoke(2) and tty security

▶ BSD-specific syscall: revoke(2)

▶ On boot, getty(8) opens tty and calls login(1)

▶ On successful authentication, login(1) chowns tty to login user

▶ After logout, getty(8) chowns tty back to root
=⇒ user can’t open tty anew

▶ getty(8) then revokes tty
=⇒ user’s existing opens of tty cease to work

Detaching an open device: revoke

▶ Detach function must revoke open instances before freeing
▶ via vdevgone on the device major number and minor number

range

▶ Forces d close to be called

Closing an open file in use

What if read, write, or ioctl is still in progress when close happens?

Choices of semantics:

Linux Driver state lingers indefinitely until all pending I/O
completes.

BSD I/O is interrupted and fails immediately so driver
state can be freed synchronously.

Focus on BSD semantics here, not merits of choice.

Closing an open file in use

What if read, write, or ioctl is still in progress when close happens?

Choices of semantics:

Linux Driver state lingers indefinitely until all pending I/O
completes.

BSD I/O is interrupted and fails immediately so driver
state can be freed synchronously.

Focus on BSD semantics here, not merits of choice.

Closing an open file in use

What if read, write, or ioctl is still in progress when close happens?

Choices of semantics:

Linux Driver state lingers indefinitely until all pending I/O
completes.

BSD I/O is interrupted and fails immediately so driver
state can be freed synchronously.

Focus on BSD semantics here, not merits of choice.

Closing an open file in use

Driver must:

1. Prevent new I/O operations

2. Interrupt pending I/O operations

3. Wait for I/O to finish

It is now safe to free the driver state.

Closing an open file in use

NetBSD-current helps with this. Two approaches:

▶ Legacy drivers: d close only.

▶ Newer drivers: d cancel and d close.

Legacy drivers: d close only

On close or revoke, NetBSD-current will:

▶ prevent new I/O operations from starting (d open, d read,
d write, . . .)

▶ call d close, which must interrupt pending I/O and wait for it
to complete.

Problem: Most drivers don’t wait.

▶ Stop-gap: after d close returns, NetBSD-current will wait for
any concurrent d open, d read, d write, d ioctl, etc., before
revoke(2) or vdevgone(9) returns.

Note: for drivers where d open can hang indefinitely, such as ttys,
d close must be able to interrupt hanging d open!

Legacy drivers: d close only

On close or revoke, NetBSD-current will:

▶ prevent new I/O operations from starting (d open, d read,
d write, . . .)

▶ call d close, which must interrupt pending I/O and wait for it
to complete.

Problem: Most drivers don’t wait.

▶ Stop-gap: after d close returns, NetBSD-current will wait for
any concurrent d open, d read, d write, d ioctl, etc., before
revoke(2) or vdevgone(9) returns.

Note: for drivers where d open can hang indefinitely, such as ttys,
d close must be able to interrupt hanging d open!

Legacy drivers: d close only

On close or revoke, NetBSD-current will:

▶ prevent new I/O operations from starting (d open, d read,
d write, . . .)

▶ call d close, which must interrupt pending I/O and wait for it
to complete.

Problem: Most drivers don’t wait.

▶ Stop-gap: after d close returns, NetBSD-current will wait for
any concurrent d open, d read, d write, d ioctl, etc., before
revoke(2) or vdevgone(9) returns.

Note: for drivers where d open can hang indefinitely, such as ttys,
d close must be able to interrupt hanging d open!

Legacy drivers: d close only

On close or revoke, NetBSD-current will:

▶ prevent new I/O operations from starting (d open, d read,
d write, . . .)

▶ call d close, which must interrupt pending I/O and wait for it
to complete.

Problem: Most drivers don’t wait.

▶ Stop-gap: after d close returns, NetBSD-current will wait for
any concurrent d open, d read, d write, d ioctl, etc., before
revoke(2) or vdevgone(9) returns.

Note: for drivers where d open can hang indefinitely, such as ttys,
d close must be able to interrupt hanging d open!

Newer drivers: d cancel and d close

On close or revoke, NetBSD-current will:

▶ prevent new I/O operations from starting (d open, d read,
d write, . . .)

▶ call d cancel, which must interrupt I/O and return promptly

▶ wait for any concurrent d open, d read, d write, d ioctl, etc.,
to return

▶ call d close, which now has exclusive access to this device
(chr/blk, major, minor)

This way, drivers don’t need custom logic to wait for pending I/O
to drain—generic kernel logic takes care of it.

Note: for drivers where d open can hang indefinitely, such as ttys,
d cancel must be able to interrupt hanging d open!
New ttycancel function can be used for d cancel in most or all
tty drivers.

Newer drivers: d cancel and d close

On close or revoke, NetBSD-current will:

▶ prevent new I/O operations from starting (d open, d read,
d write, . . .)

▶ call d cancel, which must interrupt I/O and return promptly

▶ wait for any concurrent d open, d read, d write, d ioctl, etc.,
to return

▶ call d close, which now has exclusive access to this device
(chr/blk, major, minor)

This way, drivers don’t need custom logic to wait for pending I/O
to drain—generic kernel logic takes care of it.

Note: for drivers where d open can hang indefinitely, such as ttys,
d cancel must be able to interrupt hanging d open!
New ttycancel function can be used for d cancel in most or all
tty drivers.

Newer drivers: d cancel and d close

On close or revoke, NetBSD-current will:

▶ prevent new I/O operations from starting (d open, d read,
d write, . . .)

▶ call d cancel, which must interrupt I/O and return promptly

▶ wait for any concurrent d open, d read, d write, d ioctl, etc.,
to return

▶ call d close, which now has exclusive access to this device
(chr/blk, major, minor)

This way, drivers don’t need custom logic to wait for pending I/O
to drain—generic kernel logic takes care of it.

Note: for drivers where d open can hang indefinitely, such as ttys,
d cancel must be able to interrupt hanging d open!
New ttycancel function can be used for d cancel in most or all
tty drivers.

Newer drivers: d cancel and d close

On close or revoke, NetBSD-current will:

▶ prevent new I/O operations from starting (d open, d read,
d write, . . .)

▶ call d cancel, which must interrupt I/O and return promptly

▶ wait for any concurrent d open, d read, d write, d ioctl, etc.,
to return

▶ call d close, which now has exclusive access to this device
(chr/blk, major, minor)

This way, drivers don’t need custom logic to wait for pending I/O
to drain—generic kernel logic takes care of it.

Note: for drivers where d open can hang indefinitely, such as ttys,
d cancel must be able to interrupt hanging d open!
New ttycancel function can be used for d cancel in most or all
tty drivers.

Newer drivers: d cancel and d close

On close or revoke, NetBSD-current will:

▶ prevent new I/O operations from starting (d open, d read,
d write, . . .)

▶ call d cancel, which must interrupt I/O and return promptly

▶ wait for any concurrent d open, d read, d write, d ioctl, etc.,
to return

▶ call d close, which now has exclusive access to this device
(chr/blk, major, minor)

This way, drivers don’t need custom logic to wait for pending I/O
to drain—generic kernel logic takes care of it.

Note: for drivers where d open can hang indefinitely, such as ttys,
d cancel must be able to interrupt hanging d open!
New ttycancel function can be used for d cancel in most or all
tty drivers.

Newer drivers: d cancel and d close

On close or revoke, NetBSD-current will:

▶ prevent new I/O operations from starting (d open, d read,
d write, . . .)

▶ call d cancel, which must interrupt I/O and return promptly

▶ wait for any concurrent d open, d read, d write, d ioctl, etc.,
to return

▶ call d close, which now has exclusive access to this device
(chr/blk, major, minor)

This way, drivers don’t need custom logic to wait for pending I/O
to drain—generic kernel logic takes care of it.

Note: for drivers where d open can hang indefinitely, such as ttys,
d cancel must be able to interrupt hanging d open!
New ttycancel function can be used for d cancel in most or all
tty drivers.

static int

uhidread(dev_t dev, struct uio *uio, int flag)

{

struct uhid_softc *sc =

device_lookup_private(&uhid_cd, UHIDUNIT(dev));

...

mutex_enter(&sc->sc_lock);

while (sc->sc_q.c_cc == 0) {

...

if (sc->sc_closing) {

mutex_exit(&sc->sc_lock);

return EIO;

}

error = cv_wait_sig(&sc->sc_cv,

&sc->sc_lock);

if (error)

break;

}

...

}

static int

uhidcancel(dev_t dev, int flag, int mode, struct lwp *l)

{

struct uhid_softc *sc =

device_lookup_private(&uhid_cd, UHIDUNIT(dev));

if (sc == NULL)

return 0;

/* Interrupt pending I/O, make it fail promptly. */

mutex_enter(&sc->sc_lock);

sc->sc_closing = true;

cv_broadcast(&sc->sc_cv);

mutex_exit(&sc->sc_lock);

uhidev_stop(sc->sc_hdev);

return 0;

}

static int

uhid_detach(device_t self, int flags)

{

struct uhid_softc *sc = device_private(self);

int maj, mn;

/* locate the major number */

maj = cdevsw_lookup_major(&uhid_cdevsw);

/* Forcibly close any open instances. */

mn = device_unit(self);

vdevgone(maj, mn, mn, VCHR);

/* Safe to free resources now! */

...

}

Interrupted open must restart

If d open sleeps, and d cancel or d close wakes it

(e.g., in a tty
driver), after wakeup, permissions checked before d open may have
changed, so d open must return ERESTART to restart the system
call and redo the permissions checks.

Interrupted open must restart

If d open sleeps, and d cancel or d close wakes it (e.g., in a tty
driver),

after wakeup, permissions checked before d open may have
changed, so d open must return ERESTART to restart the system
call and redo the permissions checks.

Interrupted open must restart

If d open sleeps, and d cancel or d close wakes it (e.g., in a tty
driver), after wakeup, permissions checked before d open may have
changed,

so d open must return ERESTART to restart the system
call and redo the permissions checks.

Interrupted open must restart

If d open sleeps, and d cancel or d close wakes it (e.g., in a tty
driver), after wakeup, permissions checked before d open may have
changed, so d open must return ERESTART to restart the system
call and redo the permissions checks.

New driver contract: summary

Set d cfdriver and d devtounit to match device lookup use in
d open; in exchange:

▶ detach prevents new d open from starting

▶ device lookup result in d open is stable

Set d cancel to interrupt pending I/O (including open) and return
promptly; in exchange:

▶ d close has exclusive access to (chr/blk, maj, min) triple
among concurrent devsw functions

▶ No further I/O (including d open) possible until d close
returns

(Lots of detailed edge cases handled behind the scenes in
spec vnops.c—very hairy!)

New driver contract: summary

Set d cfdriver and d devtounit to match device lookup use in
d open; in exchange:

▶ detach prevents new d open from starting

▶ device lookup result in d open is stable

Set d cancel to interrupt pending I/O (including open) and return
promptly; in exchange:

▶ d close has exclusive access to (chr/blk, maj, min) triple
among concurrent devsw functions

▶ No further I/O (including d open) possible until d close
returns

(Lots of detailed edge cases handled behind the scenes in
spec vnops.c—very hairy!)

Usage model

1. attach

2. while attached:
(a) d open on first open

(i) I/O: (d open | d read | d write | d ioctl | . . .)∗
(ii) d cancel—then NetBSD waits for existing I/O to finish

(b) d close on last close

3. vdevgone returns in detach; no more I/O possible

(for drivers with d cancel)

Questions?

?

